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Abstract

We determine the crossover exponents associated with the traceless tensorial

quadratic field, the third- and fourth-harmonic operators for O(n) vector mod-

els by re-analyzing the existing six-loop fixed dimension series with pseudo-ǫ

expansion. Within this approach we obtain the most accurate theoretical esti-

mates that are in optimum agreement with other theoretical and experimental

results.
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I. INTRODUCTION

For many years the critical behavior of O(n) vector models has caught a lot of attentions
since most of physical systems undergoing second-order phase transitions belong to the
O(n) universality classes (see Ref. [1] for a recent review). Thus a precise determination of
universal quantities as critical exponents, amplitude ratios, etc. has became necessary. The
critical behavior of these physical systems may be obtained by field theoretical investigations
essentially based on the Landau-Ginzburg-Wilson Hamiltonian

H =
∫
ddx

[
1

2
∂µ
~φ · ∂µ

~φ+
1

2
r~φ · ~φ+

1

4!
u(~φ · ~φ)2

]
, (1)

where ~φ(x) is an n-component real field. An interesting issue in these systems is to determine
the behavior of the Hamiltonian (1) under the presence of perturbation terms

H =
∫
ddx

[
1

2
∂µ
~φ · ∂µ

~φ+
1

2
r~φ · ~φ+

1

4!
u(~φ · ~φ)2 + hpP

]
, (2)

where hp(x) is an external field coupled to P(x). In fact, if P is an eigenoperator of the
RG transformations, the singular part of the Gibbs free energy becomes a scaling function
in the limit of reduced temperature t→ 0 and hp → 0, and can be written as

Fsing(t, hp) ≈ |t|dνF̂
(
hp|t|

−φp

)
, (3)

where φp ≡ ypν is the crossover exponent associated with the perturbation P and yp is the
Renormalization Group (RG) dimension of P. Moreover, one usually defines the indices βp

and γp which describe the low-temperature singular behavior of the average 〈P(x)〉 ∼ |t|βp

and of the suscettivity χP =
∫
ddx〈P(x)P(0)〉c ∼ t−γp . They satisfy the scaling relations

βp = 2 − α− φp, γp = −2 + α + 2φp. (4)

Among the perturbation operators, particularly relevant from the experimental and phe-
nomenological point of view are the so-called harmonic ones [2–4]

P2(x) = φi(x)φj(x) − δij
1

n
~φ(x) · ~φ(x),

P3(x) = φaφbφc −
~φ · ~φ

n+ 2
(φaδbc + φbδac + φcδab), (5)

P4(x) = φaφbφcφd −
~φ · ~φ

n+ 4
(δabφcφd + 5perm.) +

(~φ · ~φ)2

(n + 4)(n+ 2)
(δabδcd + 2perm.) ,

called second, third, and fourth harmonic operator respectively. In the following we denote
the crossover exponent of Pi as φi and its RG dimension as yi. Higher order harmonic
operators are generally reputed to be irrelevant at the three-dimensional O(n) fixed point
[3], thus we will not consider them here.

The crossover exponent φ2 associated with the traceless tensor field P2(x) reveals the
instability of the O(n)-symmetric theory against anisotropy [2,5–7]. It characterizes the
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phase diagram at the multicritical point where two critical lines O(n) and O(m) symmetric
meet. In some cases this gives rise to a critical theory with enlarged O(n + m) symmetry
[8–11]. Multicritical behavior arises in several different contexts in physics: in anisotropic
antiferromagnets in a uniform magnetic field [6,11], in high Tc superconductors (see e.g. Ref.
[12] and note that in the SO(5) theory of superconductivity [13] the multicritical point is
effectively O(5) symmetric), in colossal magnetoresistance materials [14], in certain theories
of strong interactions [15], etc. This list is far from being exhaustive, we only quote some
examples in very far away fields. For the XY model (n = 2) the traceless tensor field
P2(x) and its correlation function are connected with the second-harmonic order parameter
in density-wave systems [16,17], which characterizes some liquid crystals at the nematic-
smectic-A transition [16–23]. The structure factor of the secondary order parameter P2,
that within RG methods has been determined in- [16,24] and out-of-equilibrium [25], has
been experimentally measured using X-ray scattering techniques [22,23]. Finally the RG
dimension y2 enters in the study of crossover effects in diluted Ising antiferromagnets with n-
fold degenerate ground state [26], in models with random anisotropy [27], at certain quantum
phase transitions [28], and in other more complicated situations [29]. Even this list is far
from being exhaustive.

The third-harmonic crossover exponent determines the phase diagrams at the smectic-
A hexatic-B point in liquid crystals [18,23], in materials exhibiting structural normal-
incommensurate phase transitions [30–32], and at the trigonal-to-pseudotetragonal tran-
sition [33]. For n = 0, φ3 is related to the partition function exponent of nonuniform star
polymers with three arms [34]. Finally, for n ≥ 2 it determines the stability of O(n) fixed
points against n+1-state Potts-like perturbations [35] as it happens in the presence of stress
or particular magnetic fields [33,36].

The fourth-harmonic exponent φ4 is mainly related to the stability of the O(n) fixed
point against fourth-order anisotropy [8], as e.g. the cubic one [7]. It is worth mentioning
that for n = 1, even if the operators Pi(x) can not be defined through Eqs. (5), all the φi

have non trivial values. This fact has an interpretation in terms of a gas of n-colors loops
(see e.g. [37]) in the limit n→ 1.

The exponents φi and yi with i = 2, 3, 4 have been analyzed in the past with different
theoretical methods, in the framework of the ǫ-expansion [38–41,2,3,18,8,34], from the anal-
ysis of high-temperature expansion [9], by means of Monte Carlo simulations [42–44], in the
large n approach [3,45,46], and in the fixed-dimension perturbative expansion [18,24,34].

The aim of this paper is to determine the crossover exponents φi and the RG dimensions
yi by re-analyzing the three-dimensional six-loop perturbative series [24,34] with the pseudo-
ǫ expansion trick [47], since in many cases this method provided the most accurate results
in the determination of critical quantities (see, e.g., Refs. [48–52]). The idea behind this
trick is very simple: one has to multiply the linear term of the β function by a parameter
τ , find the fixed points (i.e. the zeros of the β function) as series in τ and analyze the
results as in the ǫ expansion. The critical exponents are obtained as series in τ inserting the
fixed-point expansion in the appropriate RG functions. With this trick the cumulation of
the errors coming from the non-exact knowledge of the fixed point and from the uncertainty
in the resummation of the exponents is avoided, obtaining very precise results even without
exploiting advanced resummation techniques as the conformal mapping one [48]. Note that
now, differently from ǫ expansion, only the value at τ = 1 makes sense, since the original
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series are obtained in fixed dimension d = 3.
The paper is organized as follows. In Sec. II we analyze the quadratic crossover expo-

nents, in Sec. III the cubic and quartic ones. In Sec. IV we report all the pseudo-ǫ estimates
for harmonic exponents and compare them with other theoretical and experimental ones.

II. QUADRATIC CROSSOVER EXPONENTS

The six-loop RG perturbative series in the three-dimensional approach for the second
harmonic operators were computed in Ref. [24], whereas the β function (necessary to find
the stable fixed point) is reported for general n in Ref. [53]. By using these series, one
obtains the pseudo-ǫ expansion of all the second-harmonic exponents.

We first consider the crossover exponent φ2. As a typical example, the perturbative
expression in the parameter τ for n = 2 reads

φn=2
2 = 1 +

τ

10
+

317τ 2

6750
+ 0.01688τ 3 + 0.01005τ 4 + 0.00227τ 5 + 0.00457τ 6 +O(τ 7) . (6)

At least up to the presented number of loops the series does not behave as asymptotic with
factorial growth of coefficients. Although the series has not alternating signs, which is a key
point to ensure some kind of convergence, one can try to apply a simple Padé summation.
The results for n = 2 are displayed in Table I. All the approximants possess poles on the
real positive axis. Some of them are close to τ = 1 and the estimate of φ2 on their basis
should be considered unreliable. Anyway some of these approximants have poles “far” from
τ = 1, where the series must be evaluated. Thus one may expect the presence of such poles
not to influence the approximant at τ = 1. Indeed all such Padé results are very close since
lower orders. Hereafter we choose as final estimate the average of those six-loop order Padé
without poles in 0 ≤ τ ≤ 2, and as error bar we take the maximum deviation of the final
estimate from the four-, five and six-loop Padé. The five-loop estimates are analogously
obtained, considering the maximum deviations up to three loops. Within this procedure we
obtain φn=2

2 = 1.178(15) at five-loop and 1.181(7) at six-loop. Although in good agreement

TABLE I. Padé table for φn=2
2 in pseudo-ǫ expansion. The two integer numbers N and M

denote the corresponding [N/M ] Padé. The location of the positive real pole closest to the origin

is reported in brackets.

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

M = 0 1 1.1 1.14696 1.16385 1.17390 1.17616 1.18073

M = 1 1.11111[10] 1.18855[2.1] 1.17332[2.8] 1.18868[1.7] 1.17683[4.4] 1.17166[0.5]

M = 2 1.15870[4.0] 1.17369[2.7] 1.17925[2.3] 1.17952[2.3] 1.18113[2.1]

M = 3 1.17021[3.2] 1.19549[1.4] 1.17952[2.3] 1.17920[0.1]

M = 4 1.17818[2.7] 1.17773[2.7] 1.18127[2.03]

M = 5 1.17771[2.7] 1.17814[2.7]

M = 6 1.18271[2.2]
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TABLE II. Padé table for yn=2
2 in pseudo-ǫ expansion. The two integer numbers N and M

denote the corresponding [N/M ] Padé. The location of the positive real pole closest to the origin

is reported in brackets. The final estimate is yn=2
2 = 1.763(4).

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

M = 0 2 1.8 1.76089 1.76705 1.76215 1.76707 1.76041

M = 1 1.81818 1.75138[5.1] 1.76621 1.76432 1.76461 1.76424

M = 2 1.77061 1.76756 1.76376[9.8] 1.76459 1.76443

M = 3 1.76774 1.77550[0.6] 1.76471 1.76433[13]

M = 4 1.76322 1.76505 1.76405[3.4]

M = 5 1.76630[4.4] 1.76444

M = 6 1.76162

with other theoretical estimates, we do not retain safe such estimates, since the presence
of so many poles in the Padé can cause systematic deviations from the actual value. This
can be traced back to the fact that the series has not alternating signs. To improve the
estimates, one can try to resum the series by means of the Padé-Borel-Leroy (PBL) method
(see e.g. [48]) or more advanced ones, but due to the monotonic character of the signs of
the series this leads the majority of the approximants to be defective. The resulting few
good approximants do not allow a safe determination of the quantities analyzed. The same
scenario is found for all other values of n.

To achieve a reliable estimate of φ2, one has to consider series that have alternating signs.
This can be done by considering the RG dimension y2 = φ2/ν. The pseudo-ǫ expansion of
y2 for general n is

y2 = 2 −
2

(n + 8)
τ +

2(−392 − 78n+ 5n2)

27(8 + n)3
τ 2

+
362.271 + 65.4612n+ 16.8274n2 + 6.59007n3 + 0.192062n4

(8 + n)5
τ 3

− 19417.6+10881.8 n+2401.97 n2−29.3771 n3−83.6197 n4−5.54754 n5−0.0986411 n6

(n+8)7
τ 4

+ 1.66461 106+981069. n+215076. n2+30474.1 n3+8065.54 n4+1734.33 n5+132.809 n6+4.22169 n7+0.0573847 n8

(8+n)9
τ 5

−
[

1.54538 108+1.25687 108n+4.50851 107n2+9.02640 106n3+7.98957 105n4−84675.5n5−31129.6n6−2974.43n7

(8+n)11

−133.244n8−3.26010n9−0.0369419n10

(8+n)11

]
τ 6 , (7)

that has alternating signs for n <
∼ 6. In fact, we get a small number of Padé with poles

on the real positive axis, as one may appreciate from Table II where the results for n = 2
are displayed. The goodness of the Padé persists increasing n up to n ≃ 6 and then the
results get worse. All the final data are shown in Table IV, where we also report the result
for n = 16, that has to be taken with care since in this case the series is not alternating in
signs.

We resum the perturbative series by the PBL method too. The number of defective
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approximants is very low and one may obtain a different estimate of the quantity y2. E.g.
for n = 2 the result are incredibly stable, suggesting y2 = 1.7645(3) which is compatible
with the Padé values, but it has a smaller error. This great stability within the PBL
resummation makes us decide to report as final estimates the simple Padé ones, in order to
avoid an underestimation of the uncertainties.

Exploiting the scaling relations (4), we can apply the previous procedure to characterize
the critical exponents β2 and γ2. Unfortunately these series have no alternating signs for all
values of n, resulting in a bad determination of their actual value. In Table IV we display
φ2, β2, and γ2 as obtained by using scaling relations from y2 and the most accurate estimates
of standard critical exponents in the O(n) universality class [54].

III. THIRD- AND FOURTH-HARMONIC CROSSOVER EXPONENTS

In this section we consider the critical exponents of the third- and fourth-harmonic
operators.

The six-loop three dimensional series relevant for P3 were calculated in Ref. [34]. Even
in this case only the direct estimate of y3 gives rise to a reliable result, since the series for
β3, γ3, and φ3 have not alternating signs. The pseudo-ǫ expansion of y3 for general n is

y3 =
3

2
−

6

n + 8
τ −

144 + 44n− 14n2

9(n+ 8)3
τ 2

+
404.981 + 281.073n+ 78.7256n2 + 20.9419n3 + 0.613212n4

(n + 8)5
τ 3

+ −22461.1−17805.3 n−3307.73 n2+417.392 n3+244.052 n4+15.6783 n5+0.289476 n6

(n+8)7
τ 4

+ 1.67818 106+1.44153 106 n+420045. n2+92283.5 n3+24863.3 n4+4900.83 n5+366.716 n6+11.7112 n7+0.162327 n8

(n+8)9
τ 5

−
[

1.63843 108+1.78385 108n+7.35887 107n2+1.53121 107n3+968499.n4−318541.n5−87011.6n6−8034.60n7

(n+8)11

−360.085n8−8.93464n9−0.102502n10

(n+8)11

]
τ 6 , (8)

TABLE III. Padé table for yn=0
3 in pseudo-ǫ expansion. The location of the positive real pole

closest to the origin is reported in brackets.

N = 0 N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

M = 0 1.5 0.75 0.71875 0.73111 0.72040 0.73290 0.71383

M = 1 1 0.71739[24] 0.72761 0.72537 0.72617 0.72535

M = 2 0.84706 0.73152 0.72529[47] 0.72603 0.72573

M = 3 0.78599 0.71920[3.5] 0.72621 0.72572[60]

M = 4 0.75533 0.73227 0.72530[6.5]

M = 5 0.74240 0.68973[1.3]

M = 6 0.73215
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FIG. 1. Non-defective four-, five, and six-loop PBL approximants for the RG dimension y4 for

n = 2, 3.

which has alternating signs for n <
∼ 5. To show the goodness of the Padé summation we

report in Table III the results for n = 0. The final estimate from this table is y3 = 0.725(29)
[y3 = 0.731(35)] at six-loop [five-loop], where to get the estimate and the error bar we used
the procedure outlined in the previous section. Similar good Padé tables are found for higher
values of n, up to n ≃ 5. All the final results are reported in Table IV. We also check our
results using PBL resummation, but again the uncertainty we get in such manner is too
small to be considered safe.

It is worth noting that for the partition function exponent p of non-uniform star polymers
with three arms [34], we obtain the pseudo-ǫ series

p = 3(γ + ν)/2 + φ3 = 3 +
τ 2

16
− 0.009278 τ 3 + 0.005889 τ 4 − 0.014350 τ 5 + 0.015458 τ 6 , (9)

which (by means of simple Padé) leads to p = 3.055(11). This value compares well with
other estimates [34] and with the one obtained from y3 and the most accurate theoretical
estimates of γ and ν [54] leading to p = 3.043(18).

Finally, let us consider the fourth-harmonic exponent. It has been shown in Refs. [55,8]
that the RG dimension y4 is related to the exponent characterizing the stability of the O(n)
fixed point against cubic anisotropy. Thus we can use the six-loop series of the cubic model
[56] to obtain the pseudo-ǫ expansion

y4 = 1 −
12

n+ 8
τ +

4(680 + 62n+ 23n2)

27(8 + n)3
τ 2

+
−5200.56 − 777.127n+ 33.2649n2 + 35.7448n3 + 1.25111n4

(n+ 8)5
τ 3

+ 328835.+90677.3 n+10871.8 n2+1595.82 n3+446.805 n4+28.9975 n5+0.574653 n6

(n+8)7
τ 4

+ −3.06135 107−1.35901 107 n−2.55849 106 n2−179042. n3+24766.4 n4+8290.96 n5+672.157 n6+22.2622 n7+0.318104 n8

(n+8)9
τ 5
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TABLE IV. Final estimates from six-loop pseudo-ǫ expansion. The values of yi are calculated

directly from the series reported in the text. Whereas φi, γi, and βi are obtained by means of

scaling laws, using the most accurate theoretical estimates for standard critical exponents [54].

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 16
y2 - 1.733(6) 1.763(4) 1.789(3) 1.811(2) 1.830(2) 1.927(4)
φ2 1 1.092(4) 1.184(3) 1.272(2) 1.356(4) 1.398(4) 1.755(4)
β2 - 0.798(4) 0.831(3) 0.861(2) 0.891(3) 0.894(3) 0.978(4)
γ2 - 0.294(8) 0.353(5) 0.411(4) 0.466(3) 0.504(3) 0.778(7)
y3 0.725(30) 0.814(10) 0.891(9) 0.957(4) 1.014(4) 1.063(7) 1.31(1)
φ3 0.426(18) 0.513(6) 0.598(6) 0.681(3) 0.759(4) 0.812(6) 1.19(1)
β3 1.336(18) 1.377(6) 1.416(6) 1.453(3) 1.488(5) 1.480(7) 1.54(1)
γ3 -0.91(4) -0.865(13) -0.818(12) -0.772(6) -0.728(6) -0.668(11) -0.35(2)
y4 safe -0.380(18) -0.23(1) -0.098(6) 0.012(6) 0.104(8) 0.188(8) 0.62(1)
y4 best -0.393(5) -0.236(3) -0.103(1) 0.0094(30) 0.107(5)

+
[

3.18214 109+1.83869 109 n+4.52163 108 n2+5.94633 107 n3+5.79335 106 n4+913345. n5+161861. n6+14567.2 n7

(n+8)11

+669.512 n8+17.0980 n9+0.199456 n10

(n+8)11

]
τ 6. (10)

From a general analysis [1,8], it is known that y4 is positive for n > Nc and negative in the
opposite case, with Nc a bit smaller than 3 [1]. The series (10) is alternating in signs for
n <∼ 5, but in this case the coefficients are not so small for a simple Padé summation to be
effective. Thus, we apply a PBL resummation taking into account all the results coming
from four-, five- and six-loop perturbative series. Fig. 1 sketches the non-defective PBL
approximants for n = 2, 3. It is evident that several approximants are very close each other,
whereas the [1/M ] ones are a bit far. Usually, when facing with a similar situation, the
PBL approximants that are far from the mean-value are discarded in the average procedure.
However, to be sure not to underestimate the error we report in Table IV both the estimates:
one is the average over all PBL (safe), the other (best) is obtained discarding the [1/M ]
approximants. For n = 5, 16 we report only the “safe” estimate, since the trend of higher
values of the [1/M ] approximants seems absent.

IV. CONCLUSIONS

In this paper we determined the critical exponents associated with harmonic operators
of degree 2, 3, and 4 in O(n) models by means of pseudo-ǫ expansion. All our results for yi,
φi, γi, and βi are reported for n = 0, 1, 2, 3, 4, 5, and 16 in Table IV.

In order to make a comparison with the values in the literature we report in Table V
all the most accurate theoretical estimates for yi, as obtained by means of scaling relations
(4) using the most precise determinations of standard critical exponents [54]. For all values
of n our estimates are in perfect agreement with all known results and in the majority of
the cases they are the most precise ones. We stress that such high accurateness should
not be due to underestimation of the uncertainty, since we check our final error bars with
other resummation techniques, such as Padé-Borel-Leroy and conformal mapping. However
the large n results need to be discussed, since our estimates for n >

∼ 6 can be affected by
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TABLE V. Theoretical estimates of the RG dimension yi as obtained by various approaches for

several n: five-loop ǫ expansion (ǫ exp), six-loop fixed-dimension expansion (FD), high-temperature

expansion (HT exp), Monte Carlo simulations (MC), and 1/n expansion at order O(1/n2) or

O(1/n). The results are obtained by using scaling relations, using the most precise theoretical

estimates for standard critical exponents [54].

y2 n = 1 n = 2 n = 3 n = 4 n = 5 n = 16
6-loop (pseudo-ǫ) 1.733(6) 1.763(4) 1.789(3) 1.811(2) 1.830(2) 1.927(4)
6-loop (FD) [24] 1.763(18) 1.787(30) 1.80(5) 1.83(5) 1.92(6)
5-loop (ǫ-exp) [8] 1.766(6) 1.790(3) 1.813(6) 1.832(8)
MC [42] 1.755(3) 1.787(3) 1.812(2)
MC [44] 1.815(39)
HT exp. [9] 1.750(22) 1.758(21)
O(1/n) [57] 1.640 1.730 1.784 1.932
O(1/n2) [46,58] 1.78(14) 1.83(6) 1.88(2) 1.95(3)
y3 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 16
6-loop (pseudo-ǫ) 0.725(30) 0.814(10) 0.891(9) 0.957(4) 1.014(4) 1.063(7) 1.31(1)
6-loop (FD) [34] 0.758(19) 0.895(15) 0.953(23) 1.015(31) 1.065(19) 1.310(13)
5-loop (ǫ-exp) [34] 0.739(9) 0.892(22) 0.958(42) 1.020(45) 1.064(25) 1.28(10)
O(1/n) [57] 0.791 0.933 1.323
y4 n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 16
6-loop (pseudo-ǫ) best -0.393(5) -0.236(3) -0.103(1) 0.0094(30) 0.107(5)
6-loop (pseudo-ǫ) safe -0.380(18) -0.23(1) -0.098(6) 0.012(6) 0.104(8) 0.188(8) 0.62(1)
6-loop (FD) [56,55] -0.103(8) 0.013(6) 0.111(4) 0.189(10)
5-loop (ǫ-exp) [56,8] -0.114(4) 0.003(4) 0.105(6) 0.198(11)
MC Ref. [43] -0.17(2) -0.0007(29) 0.130(24)
O(1/n) [57] -0.08 0.662

systematic errors, because the perturbative series we summed have not alternating signs.
Anyway, for n = 16 all the theoretical estimates are in good agreement, signaling that the
evaluation of our uncertainty is probably good even in this case.

Let us finally compare our values with some experiments. We mention the result φn=2
2 =

1.17(2) for the (2 → 1 + 1) bicritical point in GdAlO3 [59], and φn=3
2 = 1.279(31) in the

(3 → 2 + 1) study of MnF2 [60]. Other experimental measures of φ2 can be found in Ref.
[61]. The experimental results obtained for a nematic-smectic-A transition reported in Ref.
[22] are βn=2

2 = 0.76(4) and γn=2
2 = 0.41(9). For the third harmonic exponent we quote

βn=2
3 ≃ 1.66 in liquid crystals [23], βn=2

3 = 1.50(4) (Ref. [32]) βn=2
3 = 1.80(5) (Ref. [30]) in

Rb2ZnCl4. All these values compare well (within their own uncertainties) with our results.
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